Computational Psychiatry

Details

Schizophrenia

Schmack Katharina

00:46:11

29.08.2016, Autumn 2016


This five-day course teaches state-of-the-art methods in computational psychiatry. It covers various computational models of cognition (e.g., learning and decision-making) and brain physiology (e.g., effective connectivity) of relevance for psychiatric disorders. The course not only provides theoretical background, but also demonstrates open source software in application to concrete examples.


Media

Presentation

Share

Embed

Schizophrenia

29.08.2016, Schmack Katharina

Mood Disorders

29.08.2016, Bach Dominik

Autism

29.08.2016, Haker-Rössler Helene

Addiction

29.08.2016, Paulus Martin; Crane Huang

Variational Bayes (Theory & Software)

29.08.2016, Daunizeau Jean

Bayesian Model Selection and Averaging (Theory & Software)

30.08.2016, Stephan Klaas Enno; Frässle Stefan

Markov Decision Processes (Theory & Software)

30.08.2016, Petzschner Frederike; Rigoux Lionel

Bayes Models for Perception (Theory & Software)

31.08.2016, Petzschner Frederike

Active Inference (Theory & Software)

31.08.2016, Friston Karl; Schwartenbeck Philipp

DCM for fMRI (Theory & Software)

01.09.2016, Heinzle Jakob; den Ouden Hanneke

DCM for EEG (Theory & Software)

01.09.2016, Schöbi Dario

The neural basis of fear generalization

02.09.2016, Büchel Christian

Introduction to Computational Psychiatry

29.08.2016, Stephan Klaas Enno

 
Page URL: http://www.video.ethz.ch/lectures/d-itet/2016/autumn/227-0971-00L.html
27.06.2017
© 2017 Eidgenössische Technische Hochschule Zürich